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ABSTRACT: Aprincipalgoalof theProjectIntegrationArchitecture(PIA) is to facilitatethemeaningfulinter-application
transferof application-value-addedinformation. Such exchangingapplicationsmaybe largely unrelatedto each other
exceptthroughtheir applicability to an overall project; however, the PIA effort recognizesas fundamentalthe needto
make such applicationscooperatedespitewidedisparatieseither in thefidelity of theanalysescarried out, or eventhe
disciplinesof theanalysis.Thispaperdiscussestheapproach andtechniquesappliedandanticipatedby thePIA project
in treatingthisneed.

1 Intr oduction

Any significantengineeringprojectis inevitably thesubject
of multiple analysesof variouspartsof theoverall whole.
For example,thedesignof anew air vehiclemustconsider
all mannerof thingsfrom theexternalaerodynamicsexpe-
riencedin theextremesof its flight envelopeto theheatab-
sorbtioncharacteristicsandcombustionperformanceof its
fuel. Seldomareall theengineeringconcernsof a project
capturedin a singleanalysis. Indeed,the normalexperi-
enceis that eachanalysisis narrowly focusedto a single
disciplineandto asometimes-ill-definedlevel of fidelity.

Increasingly, theseanalysesarecapturedascomputerpro-
gramsof oneform or another. Predictably, the programs
displaya nearly limitless variety of forms for their input,
output,andoperationalexpectations,aswell asany other
characteristicthatmight bemeaningfullydefined.A foun-
dationalgoalof theProjectIntegrationArchitecture(PIA)
wasto provideasingle,common,object-orientedwrapping
layerthatcouldbuffer thisendlessdiversityof formulation
andmake all thingsappearthe samein someusefulway.
It is felt that this goal hasbeenreasonablyachieved and

demonstratedin a C++ languageimplementation.Thear-
chitecturalresultis discussedin apreviouspaper[1].

The PIA project recognized,though, that suchdisparate
analyseswereseldomappliedto anengineeringprojectin
isolation.For example,anextremelyeffective fuel in terms
of combustionperformanceprobablyaffectsthestructural
analysisof thevehiclein that its containingtankstructure
maybesmallerandlighter, oranextremelylow densityfuel
mayaffect theexternalaerodynamicanalysisby requiring
theaccommodationof greaterbulk.

Traditionally, suchanalyticalcouplingshave beenhandled
in a manualway, often simply throughhuman-to-human
interactions,andhave resultedin overall engineeringanal-
ysesthatwerelesssophisticatedthanmight have beende-
sired. To contribute in this area,the PIA effort has al-
ways intendedto build upon the commonfoundational-
architecturebaseto facilitatetheautomatedflow of mean-
ingful informationbetweensuchapplications.

A key elementin the expectationthat this goal could be
achieved wasthe perceptionthat disparateanalysescould
meaningfullytransmitinformationcontentat somebasic,
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physical level. For example,theexpectationwasthat two
computationalfluid mechanicscodes,despiteverydifferent
formulationsof the flow field problem,would, neverthe-
less,be able to communicatemeaningfullythroughbasic
statementssupplyingthingssuchastotal temperature,total
pressure,velocity vector, and the like, all given through-
outsomeinterfacingvolume.Thatexpectationcomesfrom
the realizationthat, were two engineersshepardingthese
disparate,yet cooperating,analysesfor a project,suchis
thenatureof thecommunicationsthatwouldbehad.Thus,
a part of the PIA contribution is to provide a placewhere
suchbasictransferscanbeencodedandautomated.

Anotheraspectof traditionalcoordinationof cooperating
engineeringanalysesis that, at somesmall but persistent
statisticalrate, the productconfigurationbeing analysed
getsout of synchronization.The aeroperformanceof the
thin wing is analysedandcombinedwith thefuel capacity
analysisof thethickwing, resultingin awinning,if unman-
ufacturable,design.ThePIA effort solvesthiscoordination
problem,too. Thesolutionis, of course,merelyamatterof
bookkeeping,but suchbookkeepingis a matterproven to
bebestleft to theruthlessstupidityof computingmachin-
ery.

Finally, it remainsto be said that the PIA effort doesnot
solve the propagation of information problemat the se-
mantic level, but only at the generic,bookkeepinglevel.
Semansisis a quality that is void until the architectureis
appliedto anapplication.It is only asanapplicationenters
the PIA world throughthe efforts of the persondevelop-
ing the applicationwrapperthat a survey of the informa-
tion likely to be available may be madeand instructions
encodedinto that wrapperwhich make reasonableuseof
thoseelementsof informationthat, in a semanticmanner,
make ‘sense’.

2 The Solution

As with many problemsin computing,clever (or, for the
moremodestamongus,fortuitous)arrangementof theel-
ementsrendersthe actualsolution so simple as to leave
theobserver questioningwhy theproblemwasever posed.
To a considerabledegree,this is thesituationfoundin the
inter-applicationpropagationof informationwithin thePIA
environment.Nevertheless,aneffort will bemadehereto
makemattersseemcomplicatedand,consequently, impres-
sive.

2.1 The Application Graph

The first challengeto be confrontedin the propagation
of informationbetweenapplicationsis identifying to each
suchcooperatingapplicationjust exactly which otherap-
plicationsit might obtaininformationfrom andwhich ap-
plicationsit shoulddistribute its own information to. In
treatingthis issue,the PIA project introducesa condition
consideredto belife-like,althoughperhapsnotwithoutex-
ception:thatcompositeengineeringanalyseshave a defin-
ableflow of informationwhich obeys a conceptof causal-
ity.

For example,considera simplecaseof suchinformation
flow in which analysisA providesthe informationwhich
analysisB needsto go forward,which in turn givesriseto
theinformationfor analysesC andD whichcangoforward
independently, eachproducinginformationwhichis finally
assessedby analysisE. Thatfinal assessmentby analysisE
mayindicatethattheproposeddesignis unsatisfactoryand
give rise to an adjustmentwhich then startsthe analysis
flow again.

This causalityassumptionis a key constraintand allows
thePIA projectto arrangecooperatingapplicationsasadi-
rected,acyclic graph. This is easilydonesincePacAppl
applicationobjectsinherit the characteristicsof directed
graphnodesfrom thePObjDgn classlayer.

Sucha directedgraphof cooperatingapplicationsis repre-
sented(for thepresent,ratheroptimistically)by Figure2.1,
a graphof applicationswhich were, themselves, recently
usedin theanalysisof theRocket BasedCombinedCycle
propulsionsystemproposalbeingdevelopedat the Glenn
ResearchCenter. Eachlabeledboxof thefigurerepresents
anotherPIA-wrappedapplication;CAPRIcross-vendorac-
cessto CAD geometrydata,NASTRAN structuralanaly-
sis,trajectoryanalysis,andsoon. In thisengineeringflow,
aselectedgeometry(asrevealedby CAPRI) is theultimate
driver, theinitial nodeof thegraph.Geometrythendirectly
feedsto APAS, an aeropanelloadscode,GASP, a more
refinedcomputationalfluids analysis,and NASTRAN, a
reliableanalysisof structuralperformance.As the figure
shows, information is to flow in expectedpatterns. Note
that the GASPfluid analysisreliesnot only uponthe ba-
sicgeometryreceivedfrom CAPRI,but alsoonthelumped
aerofluidanalysisof APAS.

Thebottomof thefigureshowsanevenmoreoptimisticel-
ement:a conflict resolver andsystemoptimizer. Here,the
aggregateof engineeringanalysisis to bebroughttogether,
assessedfor merit,and,potentially, resultin adesignalter-
ationrepresentedby thesweepingcurvebackto thegeom-
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Figure2.1: A Graphof CooperatingApplications

etryelementat thetopof thegraph.It mustbeemphasized
that,atthetimeof thewriting of thispaper, thisfinalassess-
mentelementis only a projectionthatsucha thing canbe
done.At themoment,this role is filled by theengineer, or
moreaptly, by the teamof engineerseffectingtheproject.
Nevertheless,it is importantto notethatthePIA projecthas
aplacefor sucha thing to go.

It is also important to note that this sweepingcurve is
not intendedto be an actualgraphedgemaking the di-
rectedgraph cyclic. Instead,it is expectedthat the re-
solver/optimizerapplicationwill be built with knowledge
of the overall problem (often expectedto be a problem
driven by geometry)andthat the feedbackoperationwill
be in themannerof a userinteractioncausinga new con-
figurationof theproblemratherthanasacyclic propagation
of anexistingconfigurationof theproblem.

Informationpropagation begins in the PIA schemein re-
sponseto some(customarily)external event, usually de-
liveredin thecontext of the initial nodeof theapplication
graph. That respondingapplicationassuresthat its infor-
mationstateis ascompleteaspossible,andthenre-delivers
the propagation event to eachof its immediatesuccessor
applications. Eachof thoseapplications,in turn, assures
thatits own informationstateis ascompleteaspossible(to
bediscussedfurther in a moment)andthenre-deliversthe
propagationeventto its own immediatesuccessorapplica-
tions. This processripples throughthe applicationgraph
until it reachesall of theterminalnodesof thatgraph.

(As mentionedabove, theapplicationgraphis expectedto
be acyclic. The designrevision anticipatedin Figure2.1
by theconflict resolver block andits sweepingcurve back
to the initial nodeof thegraphis expectedto bea special
operationof that ‘application’ ratherthana simple infor-
mationpropagationact,eventhoughthepropagationcode
maybecleverly reused.)

Becausethe applicationgraphis not constrainedto be a
simplen-ary tree(that is, becausea particularapplication,
for instancetheGASPcomputationalfluidsanalysisin Fig-
ure2.1,mayhavemorethanoneprimarysourceof inputin-
formation),assessingthecompletenessof anapplication’s
informationstateincludeswaiting for all of theimmediate
predecessorsof anapplicationto completetheirpartof the
propagation act and transmitthe propagation event on to
thereceiving application.

Also, the PIA implementationallows for the possibility
that,while the immediatepredecessorsof a givenapplica-
tion may representthe bulk of the informationflow, they
cannotbe proved to representthe entirety of that flow.
Thus,theimplementationexaminesnotonly theimmediate
predecessorapplicationtransmittingthepropagationevent,
but all the extendedpredecessorapplicationsof that im-
mediatepredecessorapplication,visiting thatgraphsetin
depth-firstorderfor reasonsthat will be explaineda little
later. (Here,theextendedpredecessorsof agraphnodeare
consideredto be all the nodesreachableby any sequence
of backward-flowing predecessoredgesoriginatingin the
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subjectnode.Also, depth-firstorderis, simplyput,visiting
thenodemostremote(or deepest)from theinitial nodeof
agraphfirst, thenthenext mostremotenodes,etc.)

Finally, the PIA implementationrecognizesthat, after all
possibleinformationsourceshave beenharvested,a com-
putationaloperationwill typically completean applica-
tion’s informationstateby producingoutputsfrom the in-
put parameterset.This operationis, of course,application
specific;however, the PIA designassignsthe operationa
placewithin theapplicationobjectandalwaysinvokesthat
functionality betweenthe completionof sourceexamina-
tionandthefurtherpropagationof informationto successor
applications.

Traversalsof theextendedpredecessorsetof theimmediate
predecessorsof a nodeof a graphwill produceredundant
examinationsof somenodesif multiple immediateprede-
cessorsto thenodeexist. (At a minimum,the initial node
will be examinedoncefor eachimmediatepredecessor.)
In many situations,redundantexaminationswill be with-
out usefulresultand,thus,the implementationprovidesa
facility to prevent them. This facility, though,is optional
becausetheremay alsoexist casesin which particularin-
formationmay not be assimilateduntil othercoordinated
informationhasbeenobtained.

2.2 The Data Configuration Graph

Havingconsideredtheactof informationpropagationatthe
level of the applicationgraph,the next stepis to consider
theactasit operateswithin thecontext of sourceanddes-
tination applications.As discussedin the cited paper[1],
PIA applicationsdo not containa singleinput/outputstate
vectorfor asingleconfigurationof theproblemathand,but
amultitudeof suchstatevectorsfor all theproblemconfig-
urationsstudied. Thesestatevectorsareheld by PacCfg
parameterconfigurationobjectswhich are,themselves,ar-
rangedasn-ary treesfor a givenapplication.Anotherkey
focusof informationpropagation is to keeptheseproblem
configurationtreessynchronizedsothatmismatchedanal-
ysesdonotoccur.

Eachparameterconfigurationobject is requiredto have a
nameuniqueamongits siblingsin theparameterconfigu-
ration tree. This allows the correspondencebetweentwo
suchtrees,asin Figure2.2, to beestablished.Thusin the
figure,it is possiblefor codeto establishthattheinitial pa-
rameterconfigurationnodeof the sourceapplicationand
thefirst two subgraphsemanatingfrom it (proceedingfrom
left to right) correspondto the entireconfigurationgraph
of thereceiving application.Further, by concatenatingthe

nameof any given nodewith thoseof its ancestorsup to
the initial nodeof thetree,a uniquepathcanbeidentified
which may thenbe appliedto anothertree(as far as that
treeexists)to identify thecorrespondingnode.

This capability is employed by the implementationin re-
sponseto a propagation operation(representedsomewhat
artisticallyby thesweepingcurve of Figure2.3) whenthe
identifiedsourceconfigurationis notof thereceiving appli-
cation’s own parameterconfigurationtree. Assumingthat
thecitedparameterconfigurationnodeof thesourceappli-
cationdoesnotalreadyhaveacorrespondingnodein there-
ceiver’s tree,rigid correspondencesbetweenthe two trees
areestablishedand the attachmentpoint in the receiver’s
treeis identifed. A nodecorrespondingto the cited node
is createdand attached,along with nodescorresponding
to thoseof any subgraphthe cited nodemay head. The
namesof thesourceparameterconfigurationnodesareused
to namethe created,correspondingreceiver nodesso that
projectconfigurationsychronizationis maintained.

Note that the informationpropagation processwill refuse
to go forward if the necessarycorrespondencesbetween
parameterconfigurationtreescannotbeestablished.Propa-
gationprocessescannotproceedbetweenapplicationswith
disparateparameterconfigurationtrees,at leastwhenthose
disparatiesexist in thepathbetweentheinitial nodeandthe
attachmentpoint. Thus,pre-existing, independentanaly-
sescannotbeconnectedtogetherhelter-skeltereventhough
two nodescorrespondthroughtheir nameswhile their an-
cestralpathsdiffer. Theintentof this is, of course,to estab-
lish somemodestassurancethat the propagation of infor-
mationfrom applicationto applicationis, in someproject
configurationsense,reasonable.

Anotherintentionof thispropagationnotbysinglenodesof
the parameterconfigurationtree,but by (potentially)sub-
graphsof thattreeis to allow andautomatetheprocessing
of entiredesignsets.Suchsetsmight provide for thesys-
tematicvariationof parametersthroughtechnologiessuch
asdesignof experiments,probablisttheories,or even by-
guess-and-by-gollyspeculation. Data configurationtree
policies(discussedin thecitedpaper)providefor theintra-
tree replicationof subgraphsfor just suchpurposesand
theinformationpropagationimplementationcontinuesthat
supportthroughouttheapplicationgraph.

2.3 The Data Configuration Node

Settingasidethe complexities of propagating entire sub-
graphsof information,it is now timeto considerthemech-
anismsof propagating information from a single source
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parameterconfigurationnode to a single destinationpa-
rameterconfigurationnode. For eachsuchconfiguration
pair, there are three distinct points or phasesat which
information may transfer: a preparatoryconfiguration-
to-configurationoperation,a parameter-by-parameterop-
eration performedfor each parameteridentified by the
source parameterconfiguration, and a postprocessing
configuration-to-configurationoperation.

The preparatoryandconcludingoperationsarereally one
philosophically: the opportunityto operateon the whole
ratherthanupontheindividual parts.It wassupposedthat
somesituationswould exist in which the combinationof
severalpiecesof informationwould berequiredto synthe-
sizea givenparameterin thereceiving application.It is to
meetsucha purposethat the preparatoryandconcluding
operationsaredesigned.

Unfortunately, preparatoryandconcludingoperations(as
is the parameter-by-parameteroperation,too) areentirely
semanticin natureand, thus, little constructive beyond
declaringtheir existencecanbedone;however, onesmall
insight was possible. It was thoughtfoolish to placeon
thesenodelevel operationsthe burdenof a parameterag-
gregatescanwhenthatwasexactly theeffort implemented
by the parameter-by-parameteroperation. To allow the
nodelevel operationsto capitalizeupontheparameter-by-
parametereffort, an operatingcontext wasdefinedasex-
isting andpersistingthroughtheentireinformationpropa-
gation operationfor a given destinationnode. (Naturally,
the baseimplementationmakes this context null, but de-
rivedapplicationsareentirelyfreeto placewhatevermight
be neededin this conceptualslot.) The parameter-by-
parameteroperationmay addto this context suchparam-
etersasmaybe appropriateto a particularsynthesis.The
concludingnodelevel operationmaythenactuponthepa-
rameterharveststhathaveoccurred.

Becausethis destination-node-level propagation context
existsbeyondthescopeof aparticularnode-to-nodeeffort,
it mayharvestparametersfrom morethanonesourceappli-
cation. Indeed,thecontext is freeto bea persistentpartof
the destinationparameterconfigurationandexist through
the entire parameterpropagation cycle of an application
graph,or evenbeyondthat.

Theparameter-by-parameteroperationis,onits surface,al-
mostself-explanatory. Oncea source-destinationparame-
terconfigurationpairhasbeenestablished(andtheprepara-
tory operationaccomplished),a simple iteration through
eachidentifiedparameterof the sourceapplicationis per-
formed, offering the destinationparameterconfiguration
the opportunityto examineeachsuchparameterand ac-
quiresuchinformationasit mayfrom it.

Naturally, thingsarejust slightly morecomplex thanthis.
Anotherconceptof the parameterconfigurationtree (de-
tailed,again,in thecitedpaper[1]) is theinheritanceof pa-
rameters.In any givenparameterconfiguration,thereis the
needto insertonly theparametersthatdiffer it from its an-
cestralheritage.A missingbut neededparametercausesan
ascentof theparameterconfigurationtreewhich is stopped
by the first configurationthat actually hasa copy of the
neededparameter.

Causingthis parameterinheritancemechanismto work in
receiving applicationsafter the act of propagation is of
someinterestin orderto preserve the benefitsof the con-
cept.To do this, thecodethat invokestheapplicationspe-
cific parameter-by-parameteroperationhas the ability to
avoid theoperationif thesourceparameterto beexamined
doesnot, in fact, exist in the sourceparameterconfigura-
tion. This avoidanceis optionalandapplicationsthatneed
to look at every parameter, whetherinheritedor not (per-
hapsto form an aggregate for later synthesis),have that
option.

2.4 The Parameter Object

With theexceptionof theapplicationwrappercode,thepa-
rameterobjectis themostsituationspecificelementof the
informationpropagation process.Despitethis, two quite
generalachievementsarein theprovinceof theparameter
object:theprovisionof adefinitivestatementof theseman-
tic meaningit encapsulatesandthepotentialofferingof that
informationin avarietyof formsconvenientto commonus-
ages.

The statementof semanticmeaningis not, of course,a
programaticentity encapsulatedwithin the parameterob-
ject. Instead,the statementis implicit in the objectkind.
For example,anobjectthatrevealsitself throughrun-time
mechanismsto be of the kind ‘parameter, scalar, double,
Machnumber, far-field’ implicitly revealsits semanticna-
ture to be just that: a far-field Mach numberrenderedas
a scalardoublevalue. This is a small, simple,but never-
thelesscrucialcontribution to theprocessfor it allowscon-
sumingpropagationcodeto determineexactlythesemantic
natureof theinformationit is lookingat.

It is anticipatedthata fully-maturedPIA objectspacewill
have a multitude(indeed,a multitudeof multitudes)of de-
finedparameterobjects.Thepropagationcodeof eachap-
plicationwrapperis to actasafilter uponthevarietyof pa-
rametersit sees;thosethatmake somesenseareprocessed
(in someway)while thosethatbearnorelevancearesimply
ignoredasthey passby.
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Eventhis process,though,hasits vagaries.A codeseeing
andconsuming,say, a localgaskinematicviscositylocated
at a position that seemsrelevant still hasno absoluteas-
surancethat this local gaskinematicviscosityis the local
gaskinematicviscositythat is needed.It is first up to the
designerof the applicationgraphto assure(to the extent
possible)thatencounteredinformationis, in fact, relevant
information. Suchtricks asmaybeplayedwith a directed
graphmaybeneededto keeponenodefrom encountering
informationthatis not relevantto it.

Applicationsmay alsowish to implementin the propaga-
tion codinga sensitivity to informationproximity, perhaps
presumingthat informationnearerto it in the application
graphis more relevant to it. This is why the depth-first
orderwasselectedfor thetraversalof theapplicationprop-
agation sourceset. This allows a receiving applicationto
encounternearerinformationfirst, giving thepotentialthat
suchconsumedinformationcan ‘blank off ’ in an inheri-
tancemannermoreremoteinformation. Consider, for ex-
ample,an applicationgraphthat first appliesan Eulerian
potentialflow solver to a flow field, refinesthat answer
with a Navier-Stokessolver, andthenpassesthatresulton
to somefurther consumer. If appropriatelyprogrammed,
thereceiving codecanconsumetheNavier-Stokessolution
and, by so doing, ‘blank off ’ the presumablylessuseful
potentialflow solution.

All of this runs the risk of making applicationwrappers
that are too situationspecific. Continuingthe above ex-
ample,thetemptationis to developanapplicationwrapper
thatexpectsalwaysto have a Navier-Stokessolutionflow-
ing from a potentialflow solution. Suchtemptationsmust
be resistedandthe delicateart of working in responseto
whatcomesto hand,ratherthanin anexpectationof what
will befound,mustbedevelopedandpracticed.

Anothercontribution of parameterobjectsto the informa-
tion propagationprocessmaybethatsomeobjectsmayof-
fer their contentin a varietyof usefulforms. Information
in parameterobjectsis to be genericand closelydefined
in a semanticsense.To be usefulto all applications,PIA
parametersmustnot betayloredin their contentor organi-
zationto the needsof any oneparticularapplication.But
thisdoesnotmeanthatonly oneaccessibleview of thatin-
formationis permittedto exist. It is entirelyreasonablethat
theparameterobjectbetheplacein whichalternatemodes
of accessservingdiverseneedsareencapsulated.

Considera parameterencapsulatinga computationalfluid
flow grid. In its simplestconceptualization,sucha grid is
an orderedsetof n-tuplesspecifyingcomputationalnode
locationsandstatevariablesin m-dimensionalspace.As
independentwork hasdemonstrated,while this is the es-

senseof sucha grid, only a fractionof the computational
fluids codesoperatewith a grid structuredin this manner.
Somecodesinsertskip rows, skip columns,or skip planes
in their grid organizations.Othercodescircularizetheset
so that elementn mapsback to element0. Somecodes
evenchangethehandedness,operatingnot in thecustom-
ary right-handedorientation,but in a left-handedone. As
thatindependentwork hasshown,all suchvariationscanbe
well andeffectively accommodatedby variantaccessviews
operatingonasingleinternalformulation.

2.5 Documentingthe Flow of Information

Thefinal, small contribution of PIA informationpropaga-
tion is to provide for thedocumentingof informationflow.
Oneof themyriadgoalsof theprojectwasnotonly to have
all the configurationsof a given problemthat were con-
sidered,but to produceanaudit trail thatcouldreveal just
exactlywhereagivenconfigurationcamefrom.

All parameterobjectsof thePIA environment(and,indeed,
very nearlyall objectsof every sort in that environment)
derive from abaseclasswith thecharacteristicof describa-
bility. Oneof thedescriptive formsthatmaybeaddedto an
object’s descriptionis a changehistory, and,with the de-
velopmentof the informationpropagation capability, one
of theelementsof sucha changehistorymaybean infor-
mationpropagationrecord.

The informationpropagation descriptive elementis a rea-
sonably simple thing. It provides a traversableset of
parameterconfiguration/identificationobject pairs, each
of which, within the application wrapper architecture,
uniquelyidentify a sourceparameterusedin thesynthesis
of thedescribedparameter. Theprovision of a setof such
pairsis intendedto allow for theoperationof sourceaggre-
gates(discussedabove) in which severalsourceparameter
objects,possiblyharvestedfrom differentapplications,are
combinedto producea singleparameterneededby there-
ceiving application.

3 When All DoesNot Go Well

The discussionthusfar has,of course,dealt in that rose-
colored world in which all goes well all of the time.
Thosewith more accuratepowers of observation (some-
timescalledcynics) will point out that this is not always
thetruenatureof engineeringandscientificanalysis.One
might debatethe advisabilityof introducinganalysesstill
in the crash-and-burn phaseof programdevelopmentinto
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the postulatedworld of automated,multi-fidelity, multi-
disciplineevaluation.Nevertheless,it is prudentto provide
for theexceptionalevent,eventhoughonehopesthatsuch
thingswill be,well, exceptional.

The PIA project does,in a preliminary way, provide for
suchoperationaldifficulties,but suchdiscussionhasbeen
held to this point in order to reducethe complicationof
theearlierdiscussion.Thereare,in fact, just two key ele-
ments:thenotationof parameterconfigurationsin whicha
malfunctionof somesorthasoccurred,andtheprovisionof
aneventmechanismwhich transmitsto someindependent
(thoughin importantwaysundefined)authorityknowledge
of the occurrenceand solicits from that authority one of
severalwell-definedresponses.

3.1 The Origin of Difficulties

The discussionbegins with the presupposedoriginatorof
suchdifficulties: the computationaloperationwhich con-
vertsinputsto outputsfor a givenapplication.Within the
PIA implementation,thisprocessreturnsasimple,boolean
result: successor failure. Shoulda failureoccur, it is han-
dled in the context of the parameterconfigurationobject
within which thecomputationwasperformedby invoking
a malfunctionevent facility built into thebaseclassof ap-
plicationobjects.

Themalfunctioneventfacility worksin thehope,if not the
expectation,of event mechanismobjectsbeingconnected
to theparameterconfigurationobject.A malfunctionevent
is passedto eachsuchfoundeventobjectandtheresponse
noted.In theeventof multipleeventobjects(giving multi-
pleresponses),asimplealgorithmmergestheresponses,in
generalelevatingthecompositeresponseto themostdireof
theindividual responses.In theeventthattherearenocon-
nectedevent objects,a ‘no response’responseis defined
and is the basevalue from which the malfunctionevent
mechanismbegins.

Theseevent objects,as implementedby the basicarchi-
tecture, in fact do nothing. They provide form without
function. It is left to theoperatingenvironmenthostingthe
applicationgraphto provide a derived event objectwhich
addssubstanceto this form. It is in this way that the na-
ture of the independentauthority is left undefined. The
actualevent objectmay leadto a pop-updialog in a GUI
environmentfor theuserto click at,or it mayemailsome-
body at homesomeplaceandwait for a respondingmes-
sage. Nearly any conceivable thing canbe laid over this
basicskeletaleventidea.

3.2 Handling a Decision

Oncesomeresponse(includingthe‘no response’response)
is obtainedin answerto the computationalmalfunction,
threepotentialhandlingsare implemented:the malfunc-
tion may be ignored,the computationmay be retried,or
themalfunctionmaybeacceptedandoperationscontinued
to whatever extentpossible.Thefirst two choicesaresim-
pler. They eitherstipulatethat,despiteappearancesto the
contrary, everythingis, in fact, all right, or that maybeif
tried again (perhapsafter somecorrective action that has
occurredin the courseof event response),everythingwill
becomeall right. In eitherof thesecases,the parameter
configurationdoesnot receive the malfunctioningcharac-
teristic.

In the third choice,thatof acceptingthe unsuccessfulop-
eration,the outlying mechanismsof malfunctionbegin to
operate.To begin, the presentingparameterconfiguration
objectis giventhemalfunctioningcharacteristic.Thischar-
acteristicis regardedascastingashadow of doubtuponany
parameterof the configurationthat hasthe outputcharac-
teristic. (Within PIA, parametersmayhave eitheraninput
or outputcharacteristic,or both,or neither.) Suchparame-
tersof malfunctioningconfigurationsareoften referredto
asuntrusted.

Within thecontext of informationpropagation, the failure
of a singlecomputationaloneis not consideredsufficient
groundsfor completeabandonmentof the overall opera-
tion (althoughthis selectionis an option). Sucha failure
maywell beanisolatedproblemof a particularconfigura-
tion of parametersin a larger propagation processthat is
progressingmeaningfully.

3.3 Dealingwith Difficulty

Thenext challengeis to perseverein thefaceof suchmal-
functions. This is begun simply by not breakingthe in-
formationpropagation process.Then,asthe processcon-
tinues,it is usuallyappropriateto avoid thedependenceof
further operationsuponuntrustedparameters,andto note
thosefurther application/configurationinstancesto which
suchuntrustedparametersmay have transmittedinforma-
tion.

To this end,theparameter-by-parameteroperationscreens
for parameterswith the outputcharacteristicthat actually
exist in aconfigurationwith themalfunctioncharacteristic.
By default, parametersmeetingthis criteria arenot trans-
mitted to the parameterpropagation code; however, this
screeningmaybeturnedoff. Without regardto thatchoice,
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though,theoccurrencein theparameter-by-parameterpro-
cessof any such untrustedparametercausesthe receiv-
ing configurationto obtainthemalfunctioningcharacteris-
tic. Thus,amalfunctionpropagatesthroughtheapplication
grapheventhoughreceiving applicationshavenoparticular
fault of theirown.

Thejustificationfor thisaggressivepropagationof themal-
functioncharacteristicis this: to beconservatively clearas
to just wherean untrustedresult reaches.To understand
thereasoning,considerthealternative: thepropagationof
the malfunctioncharacteristicmight have beenlimited to
just thoseconfigurationsthat actually usedan untrusted
parameter. Then,by electingto screenout suchparame-
ters(which is thedefault),a receiving configurationwould
avoid dependenceon dubiousresultsandinhibit theprop-
agationof themalfunctioncharacteristic.While thismight
appeardesireable,the difficulty lies in the fact that the
configurationwould then(probably)inherit corresponding
trustedparametersfrom its ancestralline, or from the an-
cestralline of its propagationsourceconfigurations.This,
in turn, would constitutea corruptionof theconfiguration
treerequirementsincethe trustedparametersusedfor the
propagatinganalysiswouldnotnecessarilybethoseappro-
priatefor themalfunctioningconfiguration.Thus,it is nec-
essaryto make theconservative choiceof propagating the
malfunctioncharacteristicto any configurationthatwould
have usedan untrustedparameterhad that parameternot
beenuntrusted.

3.4 Not Making MoreTroubles

Having propagatedthe malfunctioncharacteristicon to a
receiving parameterconfiguration,the next stepis to un-
derstandthat it shouldbe customaryto avoid the compu-
tationalconversionof inputsto outputswhenthat charac-
teristichas,in fact,propagatedto theapplication.Therea-
soninghereis thattheactof informationpropagationis for
thepurposeof obtainingat leastsomeof theinputsto a re-
ceiving application.If thoseinputsareuntrusted(because
their sourceswereuntrusted),or if they aremissing(even
thoughalternative inputsmightbeinheritedfrom anances-
tral configuration),it is probablyunwiseto expendtheef-
fort of convertingerroneousinputsto evenmoreerroneous
outputs.

Theavoidanceof computationneednot beanunexcepted
rule. Theintroductionof thesemanticsof arealapplication
providestheopportunityto qualify therelevanceof partic-
ular untrustedparameters.The applicationgraphis not a
perfectdeviceandmayoftenpresentparameters,untrusted
thoughthey maybe,of no relevancewhatsoever to a par-

ticular receiving application.Thus,aparticularapplication
maywish to keepits own accountingof untrustedparame-
tersandmake its own assessmentof its malfunctionstate.
In theeventthattheparametersthatweresignificantwere,
in fact,alsogood,thenit is entirelyappropriatefor anap-
plicationto performthedefinedcomputationandresetthe
malfunctioncharacteristicof theconfiguration.In thisway,
a malfunctionneednot propagate to every applicationof
thegraphreachablefrom themalfunction’s pointof origin.

4 Summary

Thispaperhasdiscussedthemechanismsandprotocolsim-
plementedby thePIA projectto effect informationpropa-
gation betweenengineeringanalysescooperatingto form
an overall analysisof a given project. The effort at the
genericbaselevel is principally oneof bookkeeping;par-
ticularsmustalwaysawait thesemanticsof aspecificappli-
cation. Benefitsbeyondenablingsuchcompositeanalyses
include the assuredsynchronizationof project configura-
tion amonganalyses,the ability to synthesizea particular
parameterfrom ansourceaggregate,andthegenerationof
anauditabletrail for thepropagatedinformation.

Thekey contributionof theeffort, in theeventthatit works
meaningfully, is that it will allow a wide variety of dis-
parateanalysesto be broughttogetherinto a sort of su-
perapplication,regardlessof disciplineor fidelity. Further
thanthis is the fact thatsuchsuperapplicationsareeasily
reconfigurablesimply by reformulatinginstancesof their
componentapplicationwrappersinto a different directed
applicationgraph.
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